муниципальное бюджетное общеобразовательное учреждение «Средняя школа №21 имени Н. И. Рыленкова» города Смоленска

Рассмотрено на педагогическом совете школы Протокол № 1 от 31.08.2023г

СОГЛАСОВАНО заместитель директора

Дерациин Абрамчик Н.Ю. 31.08.2023г

УТВЕРЖДЕНО Директор школы

_С.В.Вакунова

Приказ № 323 от 31.08.2023г

Рабочая программа по биологии для 11 «Б» класса (углубленный уровень) 2023/2024 учебный год

Составлена учителем биологии Антоновой Е.В.

Рабочая программа по биологии для 10 - 11 классов. Углубленный уровень.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по химии соответствует следующим нормативным правовым документам:

- Федеральному государственному образовательному стандарту среднего (полного) общего образования;
- Концепции духовно-нравственного развития и воспитания личности гражданина России;
- основной образовательной программе среднего общего образования школы;
- учебному плану школы на 2023-2024 учебный год.

Рабочая программа составлена на основе авторской программы среднего (полного) общего образования по биологии (углубленный уровень, авторы: И. Н. Пономарёва, О. А. Корнилова, Л. В. Симонова)- М.: Дрофа, 2017.

Количество часов за год в 10 классе (3 часа в неделю) – 102 часа, 7 лабораторных работ, 7 практических работ.

Продолжительность учебного года в 11 классе — 37 учебных недель включая государственную итоговую аттестацию, из них 33 учебные недели отводятся на реализацию основной образовательной программы среднего общего образования. Количество часов за год в 11 классе (3 часа в неделю) — 99 часов, 7 лабораторных работ.

Планируемые метапредметные результаты освоения программы.

- 1. Регулятивные универсальные учебные действия
 - Выпускник научится:
 - самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
 - оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
 - ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
 - оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
 - выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты; –

организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;

- сопоставлять полученный результат деятельности с поставленной заранее целью.
- 2. Познавательные универсальные учебные действия.

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности.
- 3. **Коммуникативные** универсальные учебные действия Выпускник научится:
 - осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
 - при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
 - координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

 развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств; – распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Планируемые предметные результаты

В результате изучения учебного предмета «Биология» на уровне среднего общего образования выпускник на углубленном уровне научится:

- оценивать роль биологических открытий и современных исследований в развитии науки и в практической деятельности людей;
- оценивать роль биологии в формировании современной научной картины мира, прогнозировать перспективы развития биологии;
- устанавливать и характеризовать связь основополагающих биологических понятий (клетка, организм, вид, экосистема, биосфера) с основополагающими понятиями других естественных наук;
- обосновывать систему взглядов на живую природу и место в ней человека, применяя биологические теории, учения, законы, закономерности, понимать границы их применимости;
- проводить учебно-исследовательскую деятельность по биологии:
 выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов;
- выявлять и обосновывать существенные особенности разных уровней организации жизни;
- устанавливать связь строения и функций основных биологических макромолекул, их роль в процессах клеточного метаболизма;
- решать задачи на определение последовательности нуклеотидов ДНК и иРНК (мРНК), антикодонов тРНК, последовательности аминокислот в молекуле белка, применяя знания о реакциях матричного синтеза, генетическом коде, принципе комплементарности;
- делать выводы об изменениях, которые произойдут в процессах матричного синтеза в случае изменения последовательности нуклеотидов ДНК;
- сравнивать фазы деления клетки; решать задачи на определение и сравнение количества генетического материала (хромосом и ДНК) в клетках многоклеточных организмов в разных фазах клеточного цикла;

- выявлять существенные признаки строения клеток организмов разных царств живой природы, устанавливать взаимосвязь строения и функций частей и органоидов клетки;
- обосновывать взаимосвязь пластического и энергетического обменов;
 сравнивать процессы пластического и энергетического обменов,
 происходящих в клетках живых организмов;
- определять количество хромосом в клетках растений основных отделов на разных этапах жизненного цикла;
- решать генетические задачи на дигибридное скрещивание, сцепленное (в том числе сцепленное с полом) наследование, анализирующее скрещивание, применяя законы наследственности и закономерности сцепленного наследования;
- раскрывать причины наследственных заболеваний, аргументировать необходимость мер предупреждения таких заболеваний;
- сравнивать разные способы размножения организмов;
- характеризовать основные этапы онтогенеза организмов;
- выявлять причины и существенные признаки модификационной и мутационной изменчивости; обосновывать роль изменчивости в естественном и искусственном отборе;
- обосновывать значение разных методов селекции в создании сортов растений, пород животных и штаммов микроорганизмов;
- обосновывать причины изменяемости и многообразия видов, применяя синтетическую теорию эволюции;
- характеризовать популяцию как единицу эволюции, вид как систематическую категорию и как результат эволюции;
- устанавливать связь структуры и свойств экосистемы;
- составлять схемы переноса веществ и энергии в экосистеме (сети питания),
 прогнозировать их изменения в зависимости от изменения факторов среды;
- аргументировать собственную позицию по отношению к экологическим проблемам и поведению в природной среде;
- обосновывать необходимость устойчивого развития как условия сохранения биосферы;
- оценивать практическое и этическое значение современных исследований в биологии, медицине, экологии, биотехнологии; обосновывать собственную оценку;

- выявлять в тексте биологического содержания проблему и аргументированно ее объяснять;
- представлять биологическую информацию в виде текста, таблицы, схемы, графика, диаграммы и делать выводы на основании представленных данных; преобразовывать график, таблицу, диаграмму, схему в текст биологического содержания.

Выпускник на углубленном уровне получит возможность научиться:

- организовывать и проводить индивидуальную исследовательскую деятельность по биологии (или разрабатывать индивидуальный проект): выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт своих исследований;
- прогнозировать последствия собственных исследований с учетом этических норм и экологических требований;
- выделять существенные особенности жизненных циклов представителей разных отделов растений и типов животных; изображать циклы развития в виде схем;
- анализировать и использовать в решении учебных и исследовательских задач информацию о современных исследованиях в биологии, медицине и экологии;
- аргументировать необходимость синтеза естественно-научного и социогуманитарного знания в эпоху информационной цивилизации;
- моделировать изменение экосистем под влиянием различных групп факторов окружающей среды;
- выявлять в процессе исследовательской деятельности последствия антропогенного воздействия на экосистемы своего региона, предлагать способы снижения антропогенного воздействия на экосистемы;
- использовать приобретенные компетенции в практической деятельности и повседневной жизни для приобретения опыта деятельности, предшествующей профессиональной, в основе которой лежит биология как учебный предмет.

В системе естественно-научного образования биология как учебный предмет занимает важное место в формировании: научной картины мира; функциональной грамотности, необходимой для повседневной жизни; навыков здорового и безопасного для человека и окружающей среды образа

жизни; экологического сознания; ценностного отношения к живой природе и человеку; собственной позиции по отношению к биологической информации, получаемой из разных источников.

Изучение биологии создает условия для формирования у обучающихся интеллектуальных, гражданских, коммуникационных и информационных компетенций. Освоение программы по биологии обеспечивает овладение основами учебно-исследовательской деятельности, научными методами решения различных теоретических и практических задач.

Изучение биологии на углубленном уровне ориентировано на:

подготовку к последующему профессиональному образованию; развитие индивидуальных способностей обучающихся путем более глубокого, чем предусматривается базовым уровнем, овладения основами биологии и методами изучения органического мира.

Изучение биологии на углубленном уровне обеспечивает:

применение полученных знаний для решения практических и учебно-исследовательских задач в измененной, нестандартной ситуации, умение систематизировать и обобщать полученные знания; овладение основами исследовательской деятельности биологической направленности и грамотного оформления полученных результатов; развитие способности моделировать некоторые объекты и процессы, происходящие в живой природе.

Изучение предмета на углубленном уровне позволяет формировать у обучающихся

умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия деятельности человека в экосистемах.

На базовом и углубленном уровнях изучение предмета «Биология» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов, освоения практического применения научных знаний основано на межпредметных связях с предметами областей естественных, математических и гуманитарных наук.

Содержание курса. Углубленный уровень

Биология как комплекс наук о живой природе

Биология как комплексная наука. Современные направления в биологии. Связь биологии с другими науками. Выполнение законов физики и химии в живой природе. Синтез естественно-научного и социо-гуманитарного знания на современном этапе развития цивилизации. Практическое значение

биологических знаний. Биологические системы как предмет изучения биологии. Основные принципы организации и функционирования биологических систем. Биологические системы разных уровней организации. Гипотезы и теории, их роль в формировании современной естественнонаучной картины мира. Методы научного познания органического мира. Экспериментальные методы в биологии, статистическая обработка данных.

Структурные и функциональные основы жизни

Молекулярные основы жизни. Макроэлементы и микроэлементы. Неорганические вещества. Вода, ее роль в живой природе. Гидрофильность и гидрофобность. Роль минеральных солей в клетке. Органические вещества, понятие о регулярных и нерегулярных биополимерах. Углеводы. Моносахариды, олигосахариды и полисахариды. Функции углеводов. Липиды. Функции липидов. Белки. Функции белков. Механизм действия ферментов. Нуклеиновые кислоты. ДНК: строение, свойства, местоположение, функции. РНК: строение, виды, функции. АТФ: строение, функции. Другие органические вещества клетки. Нанотехнологии в биологии.

Клетка – структурная и функциональная единица организма.

Развитие цитологии. Современные методы изучения клетки. Клеточная теория в свете современных данных о строении и функциях клетки. Теория симбиогенеза. Основные части и органоиды клетки. Строение и функции биологических мембран. Цитоплазма. Ядро. Строение и функции хромосом. Мембранные и немембранные органоиды. Цитоскелет. Включения. Основные отличительные особенности клеток прокариот. Отличительные особенности клеток эукариот. Вирусы — неклеточная форма жизни. Способы передачи вирусных инфекций и меры профилактики вирусных заболеваний. Вирусология, ее практическое значение. Клеточный метаболизм. Ферментативный характер реакций обмена веществ. Этапы энергетического обмена. Аэробное и анаэробное дыхание. Роль клеточных органоидов в процессах энергетического обмена. Автотрофы и гетеротрофы. Фотосинтез. Фазы фотосинтеза. Хемосинтез. Наследственная информация и ее реализация в клетке. Генетический код, его свойства. Эволюция представлений о гене. Современные представления о гене и геноме. Биосинтез белка, реакции матричного синтеза. Регуляция работы генов и процессов обмена веществ в клетке. Генная инженерия, геномика, протеомика. Нарушение биохимических процессов в клетке под влиянием мутагенов и наркогенных веществ. Клеточный цикл: интерфаза и деление. Митоз, значение митоза, фазы митоза. Соматические и половые клетки. Мейоз, значение мейоза, фазы мейоза. Мейоз в жизненном цикле организмов. Формирование половых клеток у цветковых растений и позвоночных животных. Регуляция деления клеток, нарушения регуляции как причина заболеваний. Стволовые клетки.

Организм

Особенности одноклеточных, колониальных и многоклеточных организмов. Взаимосвязь тканей, органов, систем органов как основа целостности организма. Основные процессы, происходящие в организме: питание и пищеварение, движение, транспорт веществ, выделение, раздражимость, регуляция у организмов. Поддержание гомеостаза, принцип обратной связи. Размножение организмов. Бесполое и половое размножение. Двойное оплодотворение у цветковых растений. Виды оплодотворения у животных. Способы размножения у растений и животных. Партеногенез. Онтогенез. Эмбриональное развитие. Постэмбриональное развитие. Прямое и непрямое развитие. Жизненные циклы разных групп организмов. Регуляция индивидуального развития. Причины нарушений развития организмов. История возникновения и развития генетики, методы генетики. Генетические терминология и символика. Генотип и фенотип. Вероятностный характер законов генетики. Законы наследственности Г. Менделя и условия их выполнения. Цитологические основы закономерностей наследования. Анализирующее скрещивание. Хромосомная теория наследственности. Сцепленное наследование, кроссинговер. Определение пола. Сцепленное с полом наследование. Взаимодействие аллельных и неаллельных генов. Генетические основы индивидуального развития. Генетическое картирование. Генетика человека, методы изучения генетики человека. Репродуктивное здоровье человека. Наследственные заболевания человека, их предупреждение. Значение генетики для медицины, этические аспекты в области медицинской генетики. Генотип и среда. Ненаследственная изменчивость. Норма реакции признака. Вариационный ряд и вариационная кривая. Наследственная изменчивость. Виды наследственной изменчивости. Комбинативная изменчивость, ее источники. Мутации, виды мутаций. Мутагены, их влияние на организмы. Мутации как причина онкологических заболеваний. Внеядерная наследственность и изменчивость. Эпигенетика. Доместикация и селекция. Центры одомашнивания животных и центры происхождения культурных растений. Методы селекции, их генетические основы. Искусственный отбор. Ускорение и повышение точности отбора с помощью современных методов генетики и биотехнологии. Гетерозис и его использование в селекции. Расширение генетического разнообразия селекционного материала: полиплоидия, отдаленная гибридизация, экспериментальный мутагенез, клеточная инженерия, хромосомная инженерия, генная инженерия. Биобезопасность.

Теория эволюции

Развитие эволюционных идей. Научные взгляды К. Линнея и Ж.Б. Ламарка. Эволюционная теория Ч. Дарвина. Свидетельства эволюции живой природы: палеонтологические, сравнительно-анатомические, эмбриологические, биогеографические, молекулярно-генетические. Развитие представлений о виде. Вид, его критерии. Популяция как форма существования вида и как элементарная единица эволюции. Синтетическая теория эволюции. Микроэволюция и макроэволюция. Движущие силы эволюции, их влияние на генофонд популяции. Дрейф генов и случайные ненаправленные изменения генофонда популяции. Уравнение Харди-Вайнберга. Молекулярногенетические механизмы эволюции. Формы естественного отбора: движущая, стабилизирующая, дизруптивная. Экологическое и географическое видообразование. Направления и пути эволюции. Формы эволюции: дивергенция, конвергенция, параллелизм. Механизмы адаптаций. Коэволюция. Роль эволюционной теории в формировании естественнонаучной картины мира. Многообразие организмов и приспособленность организмов к среде обитания как результат эволюции. Принципы классификации, систематика. Основные систематические группы органического мира. Современные подходы к классификации организмов. Развитие жизни на Земле Методы датировки событий прошлого, геохронологическая шкала. Гипотезы происхождения жизни на Земле. Основные этапы эволюции биосферы Земли. Ключевые события в эволюции растений и животных. Вымирание видов и его причины. Современные представления о происхождении человека. Систематическое положение человека. Эволюция человека. Факторы эволюции человека. Расы человека, их происхождение и единство.

Организмы и окружающая среда

Экологические факторы и закономерности их влияния на организмы (принцип толерантности, лимитирующие факторы). Приспособления организмов к действию экологических факторов. Биологические ритмы. Взаимодействие экологических факторов. Экологическая ниша. Биогеоценоз. Экосистема. Компоненты экосистемы. Трофические уровни. Типы пищевых цепей. Пищевая сеть. Круговорот веществ и поток энергии в экосистеме. Биотические взаимоотношения организмов в экосистеме. Свойства экосистем. Продуктивность и биомасса экосистем разных типов. Сукцессия. Саморегуляция экосистем. Последствия влияния деятельности человека на экосистемы. Необходимость сохранения биоразнообразия экосистемы. Агроценозы, их особенности. Учение В.И. Вернадского о биосфере, ноосфера. Закономерности существования биосферы. Компоненты биосферы и их роль. Круговороты веществ в биосфере. Биогенная миграция атомов.

Основные биомы Земли. Роль человека в биосфере. Антропогенное воздействие на биосферу. Природные ресурсы и рациональное природопользование. Загрязнение биосферы. Сохранение многообразия видов как основа устойчивости биосферы. Восстановительная экология. Проблемы устойчивого развития. Перспективы развития биологических наук, актуальные проблемы биологии.

Изменения, внесённые в программу:

Темы, изучаемые в 10 классе. 102 часа

- 1. Введение в курс биологии. 6 часов
- 2. Молекулярный состав живых клеток. 10 часов
- 3. Строение живой клетки.16 часов
- 4. Химические процессы в молекулярных системах.14 часов
- 5. Процессы жизнедеятельности клетки. 7 часов
- 6. Размножение и развитие организмов. 9 часов
- 7. Основные закономерности наследования признаков. 18 часов
- 6 8.Основные закономерности изменчивости. 8 часов.
- 8. Селекция и биотехнология на службе человечества. 7 часов.
- 7 10.Время экологической культуры.5 часов
- 8 Резервное время. 2 часа

Темы, изучаемые в 11 классе. 99 часов

- 1. Царство Вирусы, его разнообразие и значение. 7ч.
- 9. Вид и видообразование 14 ч
- 10. Учение об эволюции и его значение 12 ч
- 11. Происхождение и этапы эволюции человека 6 ч
- 12.Сохранение биоразнообразия насущная задача человечества. 5 часов.
- 13. Природное сообщество как биогеоценоз и экосистема 16 ч
- 14. Многообразие биогеоценозов и их значение 8 ч.
- 15. Учение о биосфере. 4 часа
- 16. Происхождение живого вещества. 8 часов
- 17. Биосфера как глобальная биосистема. 5 часов
- 18. Условия жизни в биосфере (6 ч)
- 19. Обобщение и повторение. 8 часов.

Учебно-методическое обеспечение образовательного процесса

Программа углубленного курса по предмету «Биология» основана на учебнометодическом комплекте, обеспечивающем обучение курсу биологии в соответствии с Федеральным государственным образовательным стандартом среднего (полного) общего образования, который включает в себя учебники:

- 1. И.Н.Пономарева, О.А.Корнилова, Л.В.Симонова биология 10 класс углублённый уровень- М.: «Вентана –Граф», 2018.
- 2. И.Н.Пономарева, О.А.Корнилова, Л.В.Симонова биология 11 класс углублённый уровень- М.: «Вентана –Граф», 2015.

Содержание.

10 класс

1. Введение в курс биологии. 6 часов

Биология как наука и её прикладное значение. Основные свойства жизни. Общие признаки биологических систем. Отличительные признаки живого и неживого. Определение понятия жизнь. Структурные уровни организации живой природы: молекулярный, клеточный, организменный, популяционновидовой, биогеоценотический, биосферный. Структурные уровни организации живой природы: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный. Методы биологических исследований. Наблюдение, эксперимент, описание, измерение, описание видов. Моделирование и мониторинг. Лаб. Работа 1: «Наблюдение за живой клеткой». Методы биологических исследований. Наблюдение, эксперимент, описание, измерение, описание видов. Моделирование и мониторинг.

2. Молекулярный уровень организации жизни.

Молекулярный состав живых клеток.10 часов

Основные химические соединения живой материи. Химические соединения в живой клетке. Органические соединения клетки — углеводы. Липиды. Белки: строении и функции. Биологические катализаторы — ферменты. Их классификация и роль в деятельности клетки. Лаб. Работа 2 «Органические вещества клетки»: 1. Выявление каталитической активности фермента каталазы в живых тканях. 2. Обнаружение органических веществ в тканях растений.

Нуклеотиды и нуклеиновые кислоты. Компактизация молекул ДНК в ядрах клеток эукариот. Рибонуклеиновые кислоты: многообразие, структура и свойства.

3. Строение живой клетки.16 часов

Из истории развития науки о клетке. Клеточная теория, её основные положения. Современные методы цитологических исследований. Основные части клетки. Поверхностный комплекс клетки. Цитоплазма и её структурные компоненты. Немембранные органоиды клетки. Мембранные

органоиды клетки. Двухмембранные органоиды клетки. Ядерная система клетки. Хромосомы, их строение и функции. Лаб. Работа 3 «Изучение хромосом на готовых микропрепаратах». Особенности строения клеток прокариот. Гипотезы о происхождении эукариотической клетки. Клетка как этап эволюции живого в истории Земли. Лабораторная работа 4 «Изучение многообразия в строении клеток»: 1. Сравнение строения клеток эукариот и прокариот. 2. Сравнение строения клеток грибов, растений и животных. Обобщающий урок по теме «Строение клетки»

4. Химические процессы в молекулярных системах.14 часов

Наследственная информация, её хранение и передача. Молекулярные основы гена и генетический код. Биосинтез белков в живой клетке. Трансляция как этап биосинтеза белков. Молекулярные процессы синтеза у растений. Энергетический этап фотосинтеза у растений. Пути ассимиляции углекислого газа. Бактериальный фотосинтез и хемосинтез. Молекулярные нергетические процессы. Кислородный этап биологического окисления. Молекулярные основы обмена веществ живой клетки. Практическая работа 1 «Решение задач по молекулярной биологии.» . Обобщающий урок по теме «Химические процессы в молекулярных системах»

5. Процессы жизнедеятельности клетки.7 часов

Клеточный цикл. Деление клетки — митоз. *Лаб. Работа 5 «Изучение свойств клетки»:* 1. Исследование фаз митоза на примере микропрепарата клеток кончика корня. 2. Наблюдение плазмолиза и деплазмолиза в клетках эпидермиса лука. Мейоз — редукционное деление клетки. *Практическая работа 2«Сравнение процессов митоза и мейоза»*. Образование мужских гамет — сперматогенез. Образование женских половых клеток — оогенез. Обобщение по теме «Процессы жизнедеятельности клетки»

6. Размножение и развитие организмов. 9 часов

Размножение организмов. Бесполое размножение. Его формы. Половое размножение. Его формы. Практическая работа 3«Сравнение процессов бесполого и полового размножения». Развитие половых клеток у высших растений. Двойное оплодотворение. Практическая работа 4«Сравнение процессов развития половых клеток у растений и животных. Сравнение процессов оплодотворения у цветковых растений и позвоночных животных». Индивидуальное развитие многоклеточного организма — онтогенез. История эмбриологии. Органогенез. Общие закономерности онтогенеза. Биогенетический закон. Рост и развитие организмов. Развитие организмов и окружающая среда. Обобщающий урок по теме « Размножение и развитие организмов.»

Организменный уровень жизни.33 часа

7. Основные закономерности наследования признаков. 18 часов

Генетика — наука о наследовании свойств организмов. Гибридологический метод исследования наследственности. Генетические закономерности, открытые Г.Менделем. Наследование признаков при дигибридном и полигибридном скрещивании. Анализирующее скрещивание. Практическая работа 5 «Решение генетических задач на моно дигибридное скрещивание, неполное доминирование». Наследование при взаимодействии генов. Практическая работа 6 «Решение генетических задач на взаимодействие генов». Ген и хромосомная теория наследственности. Генетика пола и наследование, сцепленное с полом. Практическая работа 7 «Решение генетических задач на сцепленное наследование и наследование сцепленное с полом». Ген. Современное представление о структуре гена. Наследственные болезни человека. Методы изучения генетики человека. Этические аспекты медицинской генетики. Факторы, определяющие здоровье. Лабораторный практикум 6 «Решение генетических задач». Обобщающий урок по теме «Основные закономерности наследования признаков»

8. Основные закономерности изменчивости. 8 часов.

Изменчивость — важнейшее свойство организмов. Многообразие форм изменчивости у организмов. *Лабораторная работа 7 «Модификационная изменчивость»*. Наследственная изменчивость и её типы. Многообразие типов мутаций. Мутагены и их влияние на живую природу и человека. Развитие знаний о наследственной изменчивости. Обобщение по теме «Основные закономерности изменчивости»

9. Селекция и биотехнология на службе человечества. 7 часов.

Генетические основы селекции. Вклад Н.И.Вавилова в развитие селекции. Достижения селекции растений и животных. Биотехнология, её направления и значение. Достижения биотехнологии и этические аспекты её сследований. Обобщение по теме «Селекция и биотехнология на службе человечества»

10. Время экологической культуры.5 часов

Химические элементы в оболочках Земли и их значение в жизни организмов. Химическое загрязнение окружающей среды как глобальная экологическая проблема. Химическое загрязнение окружающей среды как глобальная экологическая проблема. Структурные уровни организации живой материи. Обобщающий урок по теме «Время экологической культуры».

11 класс (99 часов, 3 часа в неделю)

1. Царство Вирусы, его разнообразие и значение. 7ч.

Неклеточные организмы – вирусы. Строение и свойства вирусов.Вирусные заболевания. Вирусные заболевания. Организменный уровень жизни и его роль в природе. Организменный уровень жизни и его роль в природе. Обобщение по теме «Вирусы»

Популяционно-видовой уровень жизни

Вид и видообразование 14 ч

Вид его критерии и структура. Лабораторная работа 1 «Характеристики вида». Популяция как форма существования и структурная единица вида. Популяция как структурный компонент биогеоценоза и основная единица эволюции. Видообразование - процесс увеличения видов на Земле. Микроэволюция и факторы эволюции. История развития эволюционных идей. Движущий и направляющий фактор эволюции. Эволюционная теория Ч. Дарвина и ее значение. Формы естественного отбора. Искусственный отбор и его роль в увеличении биологического разнообразия на Земле. Лабораторная работа 2 «Значение искусственного отбора». Видообразование - процесс увеличения видов на Земле. Обобщающий урок по теме « Вид и видообразование».

Учение об эволюции и его значение 12 ч

История развития эволюционных идей. Эволюционная теория Ч. Дарвина и ее значение. Современное учение об эволюции. Доказательства эволюции живой природы. Основные направления эволюции. Основные направления эволюции. Лабораторная работа 3 «Выявление ароморфозов и идиоадаптаций у организмов». Основные закономерности и результаты эволюции. Система живых организмов как результат процесса эволюции на Земле. Новая система органического мира. Особенности популяционновидового уровня жизни. Обобщающий урок по теме «Учение об эволюции его значение»

Происхождение и этапы эволюции человека 6 ч

Происхождения человека. История становления вида Homo sapiens. Особенности эволюции человека. Человек как уникальный вид живой природы. Расы и гипотезы их происхождения. Палеолитические находки на территории России. Обобщающий урок по теме «Происхождение и этапы эволюции человека».

Сохранение биоразнообразия – насущная задача человечества. 5 часов.

Значение изучения популяций и видов. Генофонд и охрана видов. Проблема утраты биологического разнообразия. Всемирная стратегия охраны

природных видов. Обобщающий урок по теме «Сохранение биоразнообразия – насущная задача человечества»

Биогеоценотический уровень организации жизни.

Природное сообщество как биогеоценоз и экосистема 16 ч

Биогеоценоз как биосистема и экосистема. Концепция экосистемы. Природное сообщество в концепции биогеоценоза. Другие характеристики биогеоценоза. Трофическая структура биогеоценоза (экосистемы). Экологические пирамиды чисел. Строение биогеоценоза (экосистемы). Экологические ниши в биогеоценозе. Совместная жизнь видов в биогеоценозах. Приспособления организмов к совместной жизни в биогеоценозах. Лабораторная работа 4 «Приспособленность организмов к совместной жизни в биогеоценозе». Условия устойчивости биогеоценозов. Лабораторная работа 5 «Свойства экосистем». Зарождение и смена биогеоценозов. Суточные и сезонные изменения биогеоценозов. Биогеоценоз как особый уровень организации жизни. Обобщающий урок по теме «Природное сообщество как биогеоценоз и экосистема».

Многообразие биогеоценозов и их значение 8 ч.

Многообразие биогеоценозов (экосистем). Многообразие биогеоценозов суши. Искусственные биогеоценозы —агробиоценозы. *Лабораторная работа 6 «Оценка экологического состояния территории, прилегающей к школе»*. Сохранение разнообразия биогеоценозов. Природопользование в истории человечества. Экологические законы природопользования. Обобщающий урок по теме «Многообразие биогеоценозов и их значение».

Биосферный уровень организации жизни. 26 часов

Учение о биосфере. 4 часа

Функциональная структура биосферы. Учение В.И. Вернадского о биосфере. Функции живого вещества в биосфере. Обобщающий урок по теме «Учение о биосфере».

Происхождение живого вещества. 8 часов

Гипотезы происхождения живого вещества на Земле. Современные гипотезы возникновения жизни. Предыстория происхождения живого на Земле. Физико-химическая эволюция планеты Земля. Этапы возникновения жизни на Земле. Биологическая эволюция в развитии биосферы. Хронология развития жизни на Земле. Обобщающий урок по теме «Происхождение живого вещества».

Биосфера как глобальная биосистема. 5 часов

Биосфера как глобальная биосистема и экосистема. Круговорот веществ в биосфере. Примеры круговорота веществ в биосфере. Круговорот веществ в биосфере. Примеры круговорота веществ в биосфере. Механизмы устойчивости биосферы. Обобщающий урок по теме «Биосфера как глобальная биосистема».

Условия жизни в биосфере (6 ч)

Условия жизни на Земле. Экологические факторы и их значение. Человек как житель биосферы. Особенности биосферного уровня живой материи и его роль в обеспечении жизни на Земле. *Лабораторная работа 7 «Условия жизни в биосфере»*. Взаимоотношения человека и природы как фактор развития биосферы. Обобщающий урок по теме «Условия жизни в биосфере».

Обобщение и повторение. Молекулярный уровень организации. Клеточный уровень организации. Живой организм как биологическая система. Живой организм как биологическая система.